Bubble-tree convergence and local diffeomorphism finiteness for gradient Ricci shrinkers

نویسندگان

چکیده

Abstract We prove bubble-tree convergence of sequences gradient Ricci shrinkers with uniformly bounded entropy and uniform local energy bounds, refining the compactness theory Haslhofer Müller (Geom Funct Anal 21:1091–1116, 2011; Proc Am Math Soc 143(10):4433–4437, 2015). In particular, we show that no concentrates in neck regions, a result which implies identity for sequence. Direct consequences these results are an Euler characteristic diffeomorphism finiteness theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bubble Tree Convergence for Harmonic Maps

Let Σ be a compact Riemann surface. Any sequence fn : Σ —> M of harmonic maps with bounded energy has a "bubble tree limit" consisting of a harmonic map /o : Σ -> M and a tree of bubbles fk : S 2 -> M. We give a precise construction of this bubble tree and show that the limit preserves energy and homotopy class, and that the images of the fn converge pointwise. We then give explicit counterexam...

متن کامل

Geometric Diffeomorphism Finiteness in Low Dimensions and Homotopy Group Finiteness

Our main result asserts that for any given numbers C and D the class of simply connected closed smooth manifolds of dimension m < 7 which admit a Riemannian metric with sectional curvature bounded in absolute value by |K| ≤ C and diameter uniformly bounded from above by D contains only finitely many diffeomorphism types. Thus in these dimensions the lower positive bound on volume in Cheeger’s F...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Finiteness of certain local cohomology modules

Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...

متن کامل

Gradient Kähler Ricci Solitons

Some observations about the local and global generality of gradient Kähler Ricci solitons are made, including the existence of a canonically associated holomorphic volume form and vector field, the local generality of solutions with a prescribed holomorphic volume form and vector field, and the existence of Poincaré coordinates in the case that the Ricci curvature is positive and the vector fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2023

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-023-03272-z